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Abstract The pathogenesis of neuroblastoma with bone or bone marrow metastasis (NB-BBM)
and its complex immune microenvironment remain poorly elucidated, hampering the advance-
ment of effective risk prediction for BBM and limiting therapeutic strategies. Feature recogni-
tion of 142 paraffin-embedded hematoxylin-eosin-stained tumor section images was conducted
using a Swin-Transformer for pathological histology to predict NB-BBM occurrence. Single-cell
transcriptomics identified a tumor cell subpopulation (NB3) and two tumor-associated macro-
phage (TAM) subpopulations (SPP1þ TAMs and IGHMþ TAMs) closely associated with BBM and
highlighted transketolase (TKT) as a key molecular marker for metastatic progression in NB.
This extensive multi-omics investigation into NB-BBM enhances our understanding of single-cell
transcriptional dynamics in NB beyond existing research, outlining the evolution from in situ
carcinoma through tumorigenesis to bone marrow metastases. Furthermore, exploration of
the immune microenvironment identified specific subpopulations of TAMs crucial in promoting
NB-BBM, presenting new avenues for immunotherapy. These insights enhance our understand-
ing of the metastatic process from NB to BBM and facilitate the development of more effective
diagnostic and therapeutic strategies for this aggressive pediatric cancer.
ª 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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Introduction

Bone and bone marrow represent common sites for tumor
metastases, with the occurrence of bone or bone marrow
metastases (BBM) often associated with poor prognosis.1

Consequently, addressing BBM is crucial in the treatment
and management of cancer patients. Neuroblastoma (NB),
the most prevalent extracranial solid tumor among chil-
dren, is characterized by a high rate of metastasis,
particularly in patients classified as high-risk, who have an
event-free survival rate below 80%.2,3 Furthermore, pa-
tients older than 18 months with MYCN oncogene amplifi-
cation frequently present with hematogenous spread at
diagnosis, with incidences of bone marrow and bone me-
tastases reaching as high as 71% and 56%, respectively.4 This
highlights the critical need to enhance early diagnostic
prediction of NB-BBM, innovate novel therapeutic strate-
gies, and elucidate the mechanisms and principal targets
associated with the rapid progression of NB and onset of
BBM.

Recent advancements in artificial intelligence, espe-
cially in deep learning applied to extensive medical data-
sets, have shown promise in improving cancer diagnosis and
treatment modalities in various oncological fields.5,6 In NB,
the integration of radiomics with deep learning has sur-
passed the diagnostic accuracy of traditional imaging
technologies.7 Furthermore, deep learning for automatic
tumor segmentation, using computed tomography-based
radiomics, has been successful in predicting MYCN gene
amplification status.8 Nonetheless, the use of machine
learning in conjunction with histopathological analysis for
predicting NB-BBM is still limited.

Additionally, the specific genomic landscape of NB-BBM
has not yet been characterized, with current research
focusing on telomere maintenance mechanisms and genetic
and clonal evolution during metastatic progression.9,10

Tumor metastasis embodies a multifaceted and dynamic
process, encompassing genetic and epigenetic changes,
cellular interactions, and microenvironmental shifts.11,12

To date, single-cell analyses have largely been confined to
comparing various primary NB grades13e16 or differentiating
between bone marrow-negative or -positive cases,17,18 with
some investigations exploring tumor origins.15 In the cur-
rent study, we systematically explored the heterogeneity
inherent in disease progression from primary lesions (BBM
or non-metastatic) to bone marrow metastases, identifying
differential targets across distinct stages of progression.
Based on the analysis of diversity in the development of
BBM within NB, our study facilitates early prediction of BBM
status in NB using pathological images, providing a foun-
dation for advancing future diagnostic and treatment
approaches.

Materials and methods

Patient cohort and sample collection

This study included a cohort of 167 NB patients from the
Children’s Hospital of Chongqing Medical University (CH-
CMU). The collection comprised 142 paraffin-embedded
sections stained with hematoxylin and eosin and single-cell
transcriptome sequencing data for 10 patients. This cohort,
derived from a retrospective study, included NB patients
who received standard treatment protocols at the CH-CMU
Department of Surgical Oncology from January 1, 2016, to
December 31, 2023. The patients who aged under 18 years,
received a primary pathological diagnosis of NB following
surgical resection, and had mostly complete clinical infor-
mation were included. Additionally, this study incorporated
sequencing data from 21 single-cell transcriptomes avail-
able in the Gene Expression Omnibus (GEO) public data-
base. Specifically, data from 9 cases were obtained from
the study GSE137804 (accessible at https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?accZGSE137804), and data
from 12 cases were sourced from GSE216155 (available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
accZGSE216155), enabling a comprehensive joint analysis.

Data preprocessing

Pathological slides of NB patients reviewed by a pathologist
were digitized using the slide scanning system SQS-40P
(TEKSQRAY, Shenzhen, China), and whole slide images were
stored in SVS format. The computer equipment used to
perform the experiments was a Raytheon Black Warrior
computer equipped with an NVIDIA GeForce RTX 4070
graphics card. The 142 examples of images collected in this
study were randomly divided into training, validation, and
test sets in the ratio of 8:1:1. Due to the large size of the
images, image slice extraction is a common preprocessing
step in deep learning, especially when dealing with larger
images or when the image needs to be segmented into
smaller pieces for processing. This study used the Openslide
toolkit to read the slices and extract the sliced region as a
PNG image with an image size of 1024 * 1024 pixels. After
the images were collected, the color of the images varied
due to their staining, so the color of the images needed to
be normalized. This study used the OpenCV library to
convert all the images into greyscale maps, reducing the
differences between the cases before and after the image
conversion, as shown in Figure S1A.

Feature extraction by Swin-Transformer model

Transformer is a deep learning model architecture based on
an attention mechanism. At the heart of the Transformer
model is the Self-Attention mechanism, through which the
model can establish global dependencies in a sequence,
enabling the representation of each position to take into
account the information of other positions. The Swin-
Transformer model was employed as a feature extractor for
all the sliced images in this work. The Swin-Transformer
model used in this study took the extracted image of size
1024 ) 1024 pixels and after network computation, it
became a feature tensor of size 1534 ) 768 pixels.

Single-cell data analysis

Ten patient single-cell samples were obtained from the CH-
CMU Department of Surgical Oncology; in addition, data on
these single-cell cases were obtained from previous
studies. These samples were transformed into single-cell
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suspensions and loaded onto a microfluidic device, then
processed to construct single-cell RNA sequencing libraries
using a GEXSCOPE single-cell RNA library kit (Singleron
Biotechnologies, China) following the manufacturer’s pro-
tocols. The resultant dataset was integrated with two GEO
datasets for comprehensive analysis. The Seurat R package
was used for standard downstream processing of the single-
cell sequencing data. Dimensionality reduction and cluster
analysis were performed to identify distinct cellular pop-
ulations, with an emphasis on tumor cells and
macrophages.

Cells were categorized into 10 clusters based on gene
expression patterns, representing different subpopulations
of NB cells and macrophages. These included cluster 1 NB0
(expressing GNB2L1), cluster 2 NB1 (expressing CHGB),
cluster 3 NB2 (expressing HIST1H4C and TYMS), cluster 4
NB3 (expressing UBE2C and TOP2A), cluster 5 FCN1þ tumor-
associated macrophages (TAMs; expressing FCN1 and
PLAC8), cluster 6 APODþ TAMs (expressing APOD and
GPNMB), cluster 7 SPP1þ TAMs (expressing SPP1), cluster 8
IGHMþ TAMs (expressing IGHM and MS4A1), cluster 9 CCL5þ

TAMs (expressing CCL5 and CCL7), and cluster 10 STMN2þ

TAMs (expressing STMN2 and DDX1). The InferCNV package
was used to evaluate the copy number variations in primary
tumors, comparing metastatic (G2), non-metastatic (G1),
and BM (G3) subgroups. Functional enrichment analysis of
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways was performed using gene set variation analysis
(GSVA) on the identified NB3 cell subpopulations in sub-
groups G1, G2, and G3.

For the developmental trajectory construction of TMAs,
pseudo-time analysis was conducted using the “Monocle”
package (v2.28.0), revealing the progression of gene
expression over time. Cellecell communication was
analyzed using CellChat, focusing on receptoreligand in-
teractions to infer signaling pathways and regulatory net-
works within and between cell subtypes. The evaluation of
ligand-receptor gene interactions between different cell
types was conducted by merging the count of these in-
teractions based on the L2 paradigm with the activity level
of downstream transcription factors, as calculated using
the integrated gene set enrichment analysis (GSEA)
algorithm.

Real-time quantitative PCR

Total RNA was extracted using TRIzol reagent (Invitrogen)
following the manufacturer’s recommendations. Subse-
quently, cDNA was synthesized from 200 ng of RNA using an
Evo M-MLV RT Mix Kit (Accurate Biology, China). Real-time
quantitative PCR was performed using a SYBR Green Premix
Pro Taq HS qPCR Kit II (Accurate Biology). All primers
(Beijing Tsingke Biotech Co., Ltd., China) are listed in Table
S1. The relative expression of target genes to ACTIN was
calculated using the 2�DDCT method.

Cell culture and transfection

The SK-N-SH and SH-SY5Y NB cell lines were purchased from
Pricella Biotechnology (Wuhan, China). All cells were
incubated in a culture medium containing 10% serum and 1%
penicillin/streptomycin at 37 �C and 5% CO2. Lentiviral
transfection was performed using short hairpin RNA (shRNA)
sequences, including shTKT: GCTGAGCTGCTGAAGATGT
TTTTCAAGAGAAAACATCTTCAGCAGCTCAGC.

Cell proliferation

Transfected cells and controls were seeded in 96-well
plates at a density of 2000 cells/well. Cell proliferation was
assessed at 0, 24, 48, and 72 h using the Cell Counting Kit 8
assay, with optical density measured at 450 nm using a
microplate reader. Similarly, transfected cells were resus-
pended and seeded onto crawler plates. After incubation
following the instructions of the BeyoClick� EdU Cell Pro-
liferation Kit with Alexa Fluor 555, 40,6-diamidino-2-phe-
nylindole (DAPI) staining was conducted to facilitate
fluorescence imaging while minimizing exposure to light.

Colony formation assay

After successful transfection, a total of 3000 cells were
cultured in 6-well Petri dishes for 14 days and subsequently
stained with crystal violet.

Western blot assay

Western blotting was performed as described previously.
Briefly, cells were lysed on ice for protein concentration
determination, denatured at high temperature, and sub-
jected to gel electrophoresis. Proteins were then trans-
ferred to membranes, blocked, and incubated with primary
antibodies at 4 �C overnight, followed by secondary anti-
body incubation and visualization. The specific primary
antibodies used included CCND1 (Proteintech, 60186-1-Ig),
CCND2 (Proteintech, 10934-1-AP), and b-actin (Proteintech,
66009-1-Ig).

Cell cycle by flow cytometry

Following established protocols, cells were collected, su-
pernatants were discarded, and cells were washed 2e3
times with 2 mL of pre-cooled phosphate-buffered saline
solution at 4 �C. Cells were then fixed in pre-cooled 70%
alcohol at 4 �C overnight. After incubation with RNaseA
(final concentration 200 mg/mL) at 37 �C for 30 min, the
enzyme reaction was terminated in an ice bath. Cells were
subsequently incubated with 1 mL of propidium iodide (final
concentration 20 mg/mL) prepared in phosphate-buffered
saline solution at 37 �C for 30 min. Finally, cell cycle
analysis was performed using flow cytometry.

Xenograft tumor model

Approximately 3 million SH-SY5Y cells with stable TKT
(transketolase) knockout (shTKT) or negative control
(shCtrl) were added to a mixture of 50 mL of medium and
50 mL of matrix gel. Tumor size was monitored using
electronic calipers, with the maximum diameter limited to
1 cm. All animal experiments were approved and super-
vised by the Animal Ethics Committee of CH-CMU.
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Immunohistochemistry assay

Paraffin-embedded sections from NB patients at CH-CMU
were subjected to routine dewaxing procedures, followed
by antigen retrieval using sodium citrate. Endogenous
peroxidase activity was blocked with 3% hydrogen peroxide,
before blocking with goat serum, after which the sections
were incubated at 4 �C overnight with primary antibody
anti-PD-L1 (22C3, DAKO). The following day, after incuba-
tion with secondary antibodies and development with DAB
(3,30-diaminobenzidine), the sections were rehydrated and
coverslipped.

Multiplex immunofluorescence assay

CH-CMU-obtained tissue specimens were exposed to Tris-
EDTA or citrate buffer antigen retrieval solutions within a
microwave-assisted repair cassette. Subsequently, endog-
enous peroxidase activity was quenched using 3% hydrogen
peroxide in a light-shielded environment at room temper-
ature for 25 min. The sections were then blocked with 5%
normal goat serum working solution at room temperature
for 30 min, followed by overnight incubation with primary
antibodies anti-SPP1 (1:100 dilution, Proteintech), anti-
IGHM (1:4000 dilution, Proteintech), and anti-CD68 (1:300
dilution, Abcam) in a humidified environment at 4 �C. The
following day, sections were treated with secondary anti-
bodies with specific fluorescent labels, nuclei were stained,
and the sections were mounted. Imaging was performed
thereafter.

Statistical analysis

Quantitative variables were analyzed using the paired
Wilcoxon signed rank test, and student’s t-test. Overall
survival was analyzed using univariate and multivariate Cox
proportional risk regression models and KaplaneMeier
curves (log-rank test). P-values less than 0.05 were
considered statistically significant.

Results

Machine learning for predicting NB-BBM occurrence
status using histopathological images

A detailed multi-omics study was conducted on a cohort of
167 NB patients from CH-CMU, 142 paraffin-embedded,
hematoxylin-eosin-stained tumor sections for NB-BBM pre-
diction, 10 single-cell sequencing datasets, and clinical
data for 153 patients (Fig. 1AeC and Table S2).

In this research, tumor areas were marked on patho-
logical images of size 1024 ) 1024 pixels by oncology sur-
geons. The cases were then categorized into the NB-BBM
and non-metastatic groups, employing deep multiple
Instance Learning for analysis. The pathological images
from 142 NB patients were randomly assigned into a
training set (114 cases), an independent validation set (14
cases), and a test set (14 cases). After training the model
for 100 epochs, an accuracy of 93.14 % was achieved in the
training set and 85.7 % in the test set. The progression of
loss values and accuracy during training is depicted in
Fig. 2A. The model demonstrated reliability in both the
validation and test sets, correctly identifying 13 out of 14
cases in the validation set (Fig. 2B, C) and 12 out of 14 cases
in the test set. A characteristic feature heatmap was
generated to highlight the areas of focus for the classifi-
cation model, revealing that it distinguished between the
NB-BBM and non-metastatic groups based on cellular
morphological differences and shape features (Fig. 2D).
Additionally, multivariate Cox proportional hazard model
analysis of CH-CMU patients with clinical data indicated
that those with NB-BBM exhibited higher risk and poorer
prognosis (Fig. 2E, F). Thus, an effective pathological image
prediction model can significantly aid in diagnosing NB-
BBM, facilitating intelligent classification between NB-BBM
and non-metastatic groups.
The single-cell transcriptomic landscape of primary
NB and NB-BBM

To characterize cellular heterogeneity and key targets and
mechanisms of tumor progression in NB primary tumors and
BBM, single-cell transcriptomic analysis was performed on
19 primary NB with BBM and without BBM and 12 BBM
samples. Cells from the 31 samples were classified into 12
separate clusters (Fig. 3A, B) based on quality control, data
normalization, and principal component analysis.

Initially, we analyzed the composition of primary cell
clusters in each sample (Fig. 3C) and found a significantly
higher proportion of fibroblasts in non-metastatic NB sam-
ples than in those with metastases. This finding, along with
pathological staining observations, suggests an association
between increased stromal content and less malignant NB
subtypes, like the nodular form. Similarly, the distribution
of tumor cells in the three subgroups was analyzed,
revealing that the NB3 cell subtype was predominantly
distributed in the BBM group (Fig. 3D), suggesting this
subpopulation of tumor cells may contribute to BBM pro-
gression. To further examine the clonal structure of ma-
lignant cells in primary NB and BBM groups (G1/G2/G3), the
inferCNV algorithm was used to analyze the copy number
variations in tumor cells in primary NB and BBM samples.
Results revealed that chromosome 3 deletion was more
prevalent in the G2/G3 groups than in the G1 group.
Moreover, chromosome 7 amplification was more pro-
nounced in the G2 group relative to the G1 group, consis-
tent with earlier findings (Fig. 3E). To further investigate
how NB progressed to BBM, we conducted a differential
analysis of the NB3 subpopulation of cells in the G1/G2/G3
groups, focusing on pathway enrichment. Results revealed
a strong association with the activation of oxidative phos-
phorylation, suggesting that tumor cells may promote BBM
tumorigenesis through metabolic reprogramming (Fig. 3F,
G). Subsequently, we compared the expression levels of key
genes within the five complexes of oxidative phosphoryla-
tion. Consistent with the above results, oxidative phos-
phorylation was activated when BBM occurred in NB
(Fig. 3H).



Figure 1 Multi-omics landscape of NB-BBM. (A) Experimental scheme for investigating the mechanisms underlying NB-BBM. (B)
The sample overviews available for single-cell, whole genome sequencing, pathohistological, and survival data. (C) Workflow of a
deep learning model for a multi-instance learning framework to predict NB-BBM.
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NB-BBM-promoting macrophage subpopulations and
immune microenvironment

To explore TAM heterogeneity in NB, TAMs were isolated
from 31 NB patients, yielding a total of 8762 TAMs classified
into six clusters, annotated as FCN1þ, APODþ, SPP1þ,
IGHMþ, CCL5þ, and STMN2þ TAMs (Fig. 4A, B). Subsequent
analysis of the distribution of the six TAM subtypes between
the NB-BBM and non-metastatic groups indicated that the
SPP1þ TAMs (P Z 0.0023) and IGHMþ TAMs subclusters
(P Z 0.035) were enriched in NB-BBM, suggesting their
potential role in promoting NB-BBM (Fig. 4C). Multiplex
immunofluorescence assays further verified that CD68þ and
SPP1þ TAMs were significantly enriched in NB-BBM (Fig. 4D).

To clarify the role of the SPP1þ TAM subpopulation in NB
progression, a detailed analysis was performed on the G3
subgroup of SPP1þ TAMs (Fig. 4E). We then explored the
phenotypic heterogeneity and dynamic transitions of NB



Figure 2 Deep learning models for predicting the performance of NB-BBM and the clinical characteristics of CH-CMU patients. (A)
Loss values and accuracy changes. (B, C) Predictions of the models in the validation and test sets. (D) Visualization of NB-BBM with
representative specimens of the non-metastatic group. Blue to red indicates an elevated level of model concern. (E) The multi-
variate Cox proportional hazard model applied to the CH-CMU patient cohort. (F) The KaplaneMeier curves for the BBM and non-
metastatic groups in the CH-CMU patient cohort.
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Figure 3 Single-cell landscapes between NB-BBM and non-metastatic groups. (A) UMAP of single-cell RNA sequencing data for all
cells from 31 neuroblastoma patients. (B) Expression of typical cell type marker genes in 12 clusters. (C) The percentage of each of
the 12 cell subpopulations in the neuroblastoma patient samples. (D) Differential profile of each of the 4 tumor cell subpopulations
in the G1/G2/G3 groups. (E) Tumor cells in the G1/G2/G3 subgroups were analyzed for copy number variations (CNVs). (F) Dif-
ferential genes in NB3 tumor cell subpopulations in the G1/G2/G3 group. (G) Pathway enrichment of NB3 tumor cell subpopulations
in the G1/G2/G3 group. (H) Expression of 5 complex-related molecules in the oxidative phosphorylation pathway in the G1/G2/G3
group.
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Figure 4 Macrophage subpopulations and immune microenvironment promoting NB-BBM. (A) UMAP map of 6 macrophage clusters
totaling 8672 cells. (B) Heatmap of significantly differentially expressed genes in 6 macrophage clusters. (C) Differences in 6
macrophage clusters between the NB-BBM (G2/G3) and non-metastatic (G1) groups. (D) Representative immunofluorescence im-
aging of CD68þ SPP1þ tumor-associated macrophages (TAMs) and CD68þ IGHMþ TAMs in human neuroblastoma sections with and
without BBM. Arrows indicate CD68þ SPP1þ TAMs and CD68þ IGHMþ TAMs. Scale bar, 50 mm. (EeG) Differential genetic and
functional enrichment of the G3 group of the SPP1þ TAM subpopulation. (H, I) Pseudo-time-ordered analysis of TAMs in neuro-
blastoma and the expression of genes up-regulated in SPP1þ TAMs over pseudo-time.
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Figure 5 Comparison of immune infiltration and immune targets in NB-BBM and non-metastatic groups. (A) Microenvironmental
phenotypic landscape of NB-BBM and the heatmap showing the estimated number of 22 microenvironmental cell subpopulations
based on CIBERSORT calculations (primary, blue; metastatic, red). (B) Scores of stromal, immune, tumor purity, and ESTIMATE

Flow of single-cell sequencing data analysis 9
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TAMs using Monocle to infer developmental trajectories of
cellular lineages. In the G3 group of SPP1þ TAMs, the
expression of up-regulated genes (H3F3A, PRL10, PRL28,
and PRL41) varied with pseudo-time (Fig. 4H, I). Functional
enrichment analysis, linking these variations to oxidative
phosphorylation and protein ubiquitination regulation,
highlighted their importance in tumor BBM, as supported by
previous research (Fig. 4F, G).

Interaction relationship of six TAMs with tumor
cells

Analysis of the potential interactions between NB and other
macrophage subpopulations, especially the SPP1þ TAM
subpopulation, revealed close communication between the
NB3 subpopulation and related macrophage subpopulations
(Fig. S2A). Therefore, we focused on the activation of
cellular pathways in the G3 group, particularly the SPP1þ

TAM subpopulation and pathways associated with NB3, such
as ADGRE5, ANNEXIN, CD99, CHD, GRN, MK, PTN, and TGFb
signaling (Fig. S2B). Subsequently, we analyzed the contri-
bution of marker gene interactions of the SPP1þ TAM sub-
population-associated signaling pathways to intercellular
subpopulation communication. Results indicated that CD99-
CD99 interactions played a significant role in facilitating
communication between SPP1þ TAMs and NB3 cells,
particularly in the SPP1þ TAM-NB2 subpopulation (Fig. S2C).

Potential immunotherapeutic targets in NB-BBM

Despite the limited effectiveness of immunotherapy,
particularly immune checkpoint inhibitors, in many pedi-
atric solid tumors, this study aimed to identify viable
immunotherapeutic targets for NB-BBM, paving the way for
the development of antibody-based treatments such as
naked antibodies, antibodyedrug conjugates, and bispe-
cific antibodies. Initially, we focused on immune-cell infil-
tration within the NB-BBM subset, using data from the
GSE49710, GSE45547, and TARGET datasets, and identified
a notable decrease in M1 macrophage infiltration and in-
crease in M2 macrophage infiltration in the NB-BBM group
(Fig. 5A). The estimation algorithm indicated that the NB-
BBM group exhibited a low stromal score and high tumor
purity (Fig. 5B). Furthermore, GSVA highlighted significant
activation of pathways related to MYC targets, glycolysis,
IL6/JAK/STAT3, and oxidative phosphorylation in the BBM
group (Fig. 5C). The KaplaneMeier survival curves also
indicated that the BBM group exhibited poor prognosis
(Fig. 5D).

To identify potential immune targets in NB-BBM patients
and examine their role in tumor immune infiltration, a
comparative analysis of gene expression between
between NB-BBM and non-metastatic groups. (C) Gene set variation
and non-metastatic group samples. (D) Prognostic and survival ana
of immune-related targets between the NB-BBM and non-metastat
sentative images (left panel) and quantitative results (right panel
samples. Quantitative representation of PDL1 staining and microsat
Tumor mutational burden (TMB) between the NB-BBM and non-me
metastatic and non-metastatic tumors was conducted
(Fig. 5E, F). Results revealed that CD274, LAG3, and TIGIT
were significantly up-regulated in the G3 (BM) group, based
on single-cell transcriptome data. Immunohistochemical
analysis of PD-L1 in a cohort of 51 NB patients further
demonstrated pronounced expression in the NB-BBM group,
with a tumor proportion score (PD-L1 protein-expressing
tumor cells as a proportion of whole tumor cells) > 1 dis-
tinguishing metastatic and non-metastatic NB patients
(P Z 0.046) (Fig. 5G, H).

Additionally, we investigated microsatellite instability
and tumor mutational burden as predictors of immuno-
therapy efficacy between the NB-BBM and non-metastatic
groups. Previous studies have suggested that microsatellite
instability is uncommon in NB, with the tumor mutational
load categorizing primary NB with the lowest mutation
rates among cancers, corresponding with the “immuno-
cold” phenotype. Consistently, our findings revealed no
significant disparities in microsatellite instability or tumor
mutational burden between the NB-BBM and non-metasta-
tic groups, indicating the need for alternative strategies to
effectively target NB (Fig. 5I).

Integrated transcriptomics and single-cell analyses
confirm metabolism-related molecule TKT as a
potential regulator of NB-BBM

To identify key drivers of BBM development in NB, we
initially analyzed single-cell data from up and down-regu-
lated genes across the G1/G2/G3 groups (Fig. 6B), then
performed transcriptome analysis of the GSE49710,
GSE45547, and TARGET datasets. Given the close associa-
tion between MYCN amplification and NB-BBM, we divided
each of the three transcriptome cohorts into MYCN-ampli-
fied and non-amplified groups for differential analysis
(Fig. 6A). Cytoscape was then used to identify core genes
among the differentially expressed genes in the three NB
cohorts (Fig. 6C). Based on analysis of the up-regulated
genes in the G2/G3 group within the single-cell dataset and
in the three NB transcriptome cohorts, four key targets
related to metabolism were identified: TKT, AHCY, ODC1,
and PHGDH (Fig. 6D). The distribution and expression of
these four key targets in single cells and the G1/G2/G3
groups were further determined (Fig. S3B, C). We focused
on the metabolism-related molecule TKT, whose mecha-
nism has not been studied in NB. Analysis of TKT expression
in the 53 CH-CMU-obtained NB tumor tissues indicated TKT
enrichment in BBM (Fig. 6E and Table S3). Furthermore,
survival analysis indicated that a higher level of TKT was
associated with poorer prognosis in NB patients (Fig. 6F;
Fig. S3D).

To explore the potential molecular mechanisms under-
lying TKT regulating NB progression and BBM occurrence,
analysis (GSVA) shows the differential pathways in the NB-BBM
lysis of the NB-BBM and non-metastatic groups. (E, F) Heatmap
ic groups in transcriptomic and single-cell data. (G, H) Repre-
) of PD-L1 immunohistochemical staining in 51 neuroblastoma
ellite instability (MSI) in NB-BBM and non-metastatic groups. (I)
tastatic groups in 51 neuroblastoma patients in CH-CMU.



Figure 6 Integrated transcriptomic and single-cell analyses identified TKT as a potential regulatory molecule for NB-BBM. (A)
Differential genes between MYCN amplified and non-amplified intergroups in the GSE49710, GSE45547, and TARGET datasets. (B)
Up- and down-regulated genes between the G1/G2/G3 groups of the single-cell dataset. (C) Core genes were identified using
Cytoscape in the GSE49710, GSE45547, and TARGET datasets. (D) Key metabolic genes in the up-regulated genes of the G2/G3
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Gene Ontology (GO) and KEGG pathway analyses were
performed on differentially expressed genes between
groups with high and low TKT expression. Results revealed
that TKT up-regulation was closely related to cell cycle
processes (Fig. 6G, H). We selected two cell lines, SK-N-SH
and SH-SY5Y, to explore the potential function of TKT in NB
cells. Stable transfected cells were successfully con-
structed using lentivirus. Quantitatively, cell growth was
significantly reduced after TKT knockdown (Fig. 7A).
Measured with EdU, the results showed the same trend of
both cell lines, with reduced proliferation in the knock-
down group (Fig. 7B). Colony formation assay showed that
cell growth was reduced in the TKT knockdown group in
both cell lines compared with the control group (Fig. 7C).
The knockdown of TKT significantly reduced the protein
expression of CCND1 and CCND2 in the cells (Fig. 7D),
suggesting that TKT may affect the mitotic G1/S phase of
NB cells. We also used flow cytometry to detect the effect
of TKT on the cell cycle process. The results showed that
TKT knockdown delayed the cellular G1eS phase transition,
and the number of SH-SY5Y cells lagging to the G1 phase
increased from 53.62% to 61.62%, and the S phase
decreased from 39.09% to 26.76%. Similarly, the same trend
was obtained for another cell line of NB (Fig. 7GeJ).
Finally, stably transfected TKT and control SH-SY5Y cells
were injected subcutaneously into the skin of nude mice.
The results showed that TKT knockdown significantly
reduced the tumor volume and weight compared with the
control (Fig. 7E, F).
Discussion

This study offers an in-depth analysis of the use of artificial
intelligence for pathological diagnosis in NB, particularly
for predicting BBM transformation, alongside the genomic
and single-cell transcriptomic alterations found in NB-BBM.
Our findings underscore the importance of predictive
pathological diagnosis for NB-BBM, as well as exploring the
onset and progression of NB and the tumor heterogeneity
observed in distant BBM.

Leveraging deep learning to analyze histological images
presents significant potential for identifying patterns asso-
ciated with tumor characteristics, enabling the prediction
of aggressive biological behaviors such as the propensity for
metastasis.19 Previous deep-learning models based on NB
pathological images have focused on evaluating tumor dif-
ferentiation and providing prognostic assessments.20e22 To
the best of our knowledge, this study marks the first
application of deep learning models to pathological images
specifically for predicting BBM in NB. Notably, our predic-
tive model, based on pathology slide images and the Swin-
Transformer algorithm, achieved a classification accuracy
group and the up-regulated genes in the three neuroblastoma trans
of TKT in neuroblastoma patients with or without high risk, MYCN a
curves were plotted by dividing neuroblastoma patients into high- a
Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (K
GSE45547, and TARGET merged datasets, which were divided into h
expression.
exceeding 85%, thus contributing to more precise imaging
evaluations and supporting timely intervention for NB pa-
tients at heightened risk of BBM.

Cancer metabolism has regained widespread research
interest in recent years.23 The focus has been mainly on the
primary tumor, while metabolic regulation during dissemi-
nation has been less well-studied. In our single-cell study,
we focused on alterations in metabolism during progression
from the primary lesion to tumor progression to bone or
bone metastasis, and we found that oxidative phosphory-
lation was emphatically involved in the development of
BBM in patients with NB, where the key molecules in
complexes IeV were significantly higher expressed in the
metastatic group. It has been reported that some cancer
cells, especially with high metastasis, are more dependent
on OXPHOS.24 The absence of a retinoblastoma (RB1) tumor
suppressor in breast cancer induces OXPHOS, which plays a
central role in promoting metastasis.25 Meanwhile, in NB,
DLST deficiency significantly inhibits NADH production and
impairs OXPHOS, leading to growth arrest and apoptosis of
NB cells. In addition, multiple inhibitors targeting the
electron transport chain, including potent IACS-010759,
which is currently undergoing clinical trials in other can-
cers, effectively reduced NB proliferation in vitro.26 All
these results reveal that OXPHOS is an important factor in
the progression of NB metastasis.

Remarkably, the TKT gene was identified through single-
cell transcriptomics as a crucial metabolic molecule linked
to BBM. Previous studies have confirmed its role in pro-
moting tumor proliferation and metastasis.27,28 Consis-
tently, our findings showed that the TKT gene was strongly
associated with the clinical features of NB patients, espe-
cially in the BBM group. Subsequent in vivo and in vitro
experiments even further validated the malignant biolog-
ical behavior of TKT. Pathway enrichment analysis revealed
that high TKT expression was correlated with cell cycle
activity, while NB cell lines demonstrated that down-regu-
lation of the TKT gene led to a decrease in CCND1, CCND2,
and other cell cycle-related proteins.

Our results indicated that immunosuppression played a
key role in the NB-BBM group. At the genomic level, no
significant differences in tumor mutational load were
observed between the BBM and non-metastatic groups,
consistent with existing studies.29,30 NB employs a variety
of immune evasion strategies, including aberrant expres-
sion of immune checkpoint molecules.31 Tumor cells are
known to hijack the PD-1/PD-L1 pathway to evade immune
surveillance.32,33 Elevated PD-L1 expression was observed
in the BBM group based on single-cell analysis, with protein
expression differences noted between the BBM and non-
metastatic groups in the CH-CMU cohort. Furthermore, NB
induces immunosuppressive myeloid cells that secrete
immunomodulatory mediators, thereby affecting immune
criptome cohorts in the single-cell data. (E) Relative expression
mplification, unfavorable histology (uFH), and BBM. (F) Survival
nd low-expression groups based on TKT expression. (G, H) Gene
EGG) enrichment analyses were performed in the GSE49710,
igh- and low-expression groups based on the median TKT mRNA



Figure 7 TKT controls neuroblastoma cell growth in vitro and in vivo. (A) The growth rate of neuroblastoma cells was signifi-
cantly reduced after TKT knockdown as detected by the CCK-8 assay. (B) 5-Ethyl-2-deoxyuridine (EdU) assay showed that down-
regulation of TKT reduced the growth of neuroblastoma cells. (C) Colony formation assays showed that in neuroblastoma cells,
knockdown of TKT in neuroblastoma cells reduced the size of colony formation. (D) Effects on CCND1 and CCND2 protein expression
after knockdown of TKT in neuroblastoma cells. (E, F) Subcutaneous tumor formation. TKT knockdown resulted in a reduction in
tumor size and weight versus control. (GeJ) Effect of TKT on cell cycle progression in neuroblastoma cells detected by flow
cytometry.
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cell infiltration and function. TAMs, which constitute a
significant portion of the immune cell population in tumors,
are critical for NB prognosis.34,35 They are known to secrete
TGF-b1,36 which directly targets cytotoxic T cells and par-
ticipates in the differentiation of regulatory T cells.37e39

Our research also highlighted the enrichment of SPP1þ TAMs
in NB-BBM, which closely interacted with the metastatic
subpopulation of NB bone marrow (NB3) and potentially
contributed to NB progression to BBM through oxidative
phosphorylation and aberrant TGF-b1 expression. However,
further experiments are needed to provide conclusive evi-
dence on the role of SPP1þ TAMs in NB-BBM.

In conclusion, our work offers a pathodiagnostic pre-
diction for the risk of NB-BBM, enhances other imaging di-
agnoses, and elucidates the cellular heterogeneity of
initial, progressive, and distant metastatic sites in NB.
However, our study has several limitations. First, there is a
need for multicenter validation of the model for predicting
NB-BBM status, and given the retrospective nature of this
study, prospective research is required to confirm its clin-
ical utility. Second, despite the multi-omics approach,
additional experiments are necessary to verify the reli-
ability and usefulness of the identified targets. Future
strategies should explore linking critical molecules with
targeted drugs through nuclides, offering a novel avenue to
improve NB-BBM prognosis.
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